
A minimum response time cr i ter ion is used i n  
the design of a pitch att i tude controller for a 
flexible launch vehicle, The cr i ter ion is applied 
t o  a fourth order model containing the primary 
dynamics of an assumed thirteenth order vehicle. 
A collection of time-optimal, open loop 
t ra jector ies  is used t o  define the closed loop 
control law. Results of an analog simulation are 
presented which show that t h i s  oontrol law properly 
applied t o  the flexible vehicle resu l t s  I n  good 
control . )q &--dm 
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Introduction 

The purpose of this paper is to show that 
optimal control theory may be applied in the 
rational design of closed loop regulators--for 
practical plants of high order. The time-optlmal 
criterion applied to pitch at.t;itude control of a 
flexible launoh vehicle 8erve8 to Illustrate some 
of' the problems Involved in applications to 
significant control problems and to demonstrate 
some potential solutions. The techniques suggested 
are of course applicable to a much wider class of 
problems-than the one considered. 
the time-optimal design criterion may be applied 
to any state variable or any linear combination of 
t h e  state variables, The truncated model of 
the complete plant is a suitable model for a m  
design criterion. Similarly, the adjustable 
logical-network used for obtaining and mechanizing 
the zon-llnear control law from a colleotion of 
open loop trajectories is valuable either for 
simply mechanizing a known non-linear control law 
or for obtaining closed loop control according to 
a control law which is only implicitly defined. 

For example 

Equations of Motion 

The assumed equations of a typical 250,000 
pound flexible launch vehicle are given in Table 1. 
Poles and zeros of the 
listed in Table 2, 
taken at the maximum dynamic pressure flight 

OR transfer function are 
Airframe coefficients are 



condition with flight speed assumed oonstant. The 
equations include dynamics of t-b rigid body, 
three body flexure modes, tail-wags dog, actuator, 
rate servo and an integraeion of pitch rate for 
control of pitch attitude, 
variable l a  assumed available from gimballng of 
the engine, 

A single control 

Specification of the Controller 

In applying optimal control theory to the 
synthesis of controller for practical plants it 
i s  necessary to specify both the optimization 
criterion and what variable or variables are to 
be controlled. 
minimum response time, minimum fuel, minimum 
ermr squared, etc,, there will be many different 
choices of controlled variables, Some of these 
choices will more closely meet the requiremen38 of 
the physical situation than others, 
choices may be completely unacceptable as 
illustrated by time optimally regulating the 
state vector of the rigid launch vehicle in 
Figure 1, When all components of the atate 
vector, pitch attitude, pitch rate, angle of attack 
and gimbal deflection are brought to zero i n  
m i n i m u m  time f r o m  an initial displacement in pitch 
attitude of 0.01 radian, displacements of attitude 
and angle of attack greater than 0.15 radian occur. 
Although this is the time-optimal response f o r  
regulation of the state vector, it is certainly 
not acceptable since it would literally de8trOy 

For each criterion such as 

Some of the 



the vehlole. On the other hand, I f  the problem 
posed is tha t  of bringing the single component, 
pitah at t i tude,  t o  zero In  minimum time and hol-dlng 
it  there then the deadbeat response t o  step in- 
put of a t t i tude i s  obtained (Figure 1). I n  this 
case angle of attack and gimbal deflection are 
not zero at  the response t i m e  (time when 8 and 6 
are first zero) but decay idth a 21.7 second time 
constant characteristic of the plant. 
component control such as this--can be described 
as motion t o  a region i n  the n-dimensional space. 
m e  target region is determined as that region in 
n-space where the component being controlled is 
zero and is capable of being held there with a 
bounded control variable. (Reference 1, 2),  The 
necesaizrf silrfic!ient conditions fo r  minimum 
time motion t o  such a region have been obtained 
(Reference 3) 

I n  the work presented i n  this paper, optimum 
COII~TGI. szmthesis techniques are demonstrated for  
control of pitch a t t i tude .  
I s  fourth order, one dimensional. 
control variable is a function of four variables,- 
and the target  set i s  a l ine  segment i n  this four- 
space, Choice of p i tch  a t t i tude was arbitrary. 
The techniques apply equally as well t o  control 
of other components of the s ta te  vector or  t o  
control of a l inear  combination of them such as 
m%nimum dr i f t .  

Single 

The controller obtained 
That is, the 
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A Truncated Model 
.- 

Although time-optimal control theory applies 
i n  principle t o  regulation of plants of azy order, 
it i s  not desirable nor necessary t o  apply it i n  
controller design t o  the complete plant represent** 
t lon  when the motion of the variable being 
controlled I s  primarily influenced by re la t ive ly  
few variables. 
the flemme mode frequencies are wite high and 
aero-agnamia coupling small so flexure haa only 
minor effeoks on r ig id  body pitching motion. -The 
same i s  true of the actuator dynamics. 
quently there i s  a natural division of the plant 
Into a set of &@nInant and a se t  of secondary 
&y-ziriics. 
control the dominant modes only, and conceptuaiiy 

I n  the launch veltiole considered, 

Conse- 

=me-optimal synthesis is applied t o  

the secondary dynamics act as a f i l t e r  on ehe 
primary modes. 
transfer function 7 
Table 1, has been divided into two parts 

s is shown i n  Figure 2 .  The 
9 R  f o r  the en t i re  plant of 

Primary dynamics are contained i n  

0,8808 (s + 0.0478) . 

’ Q1 s(s+O,oz)(s - 1.4296)(s+1.4964) 
and secondary dynamics i n  (I2. Feedback of the 
f i c t i t i ous  output of GI i s  used for  controller 
design. 
of Referenoe 4 pennit one to  derive the l inear  

The partial princlple coordinate methods 
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transformation relatlngthe y coordinates to the 
state of the system, x. The transformation 

-- P"LX (3) 

where y is an a-vector, L an mxn-matrix and x 
an n-vector, in general, then permits the 
fictitious control loop of Figure 2 to be changed 
to the one which is pwsically realizable in 
Pi- 3. 

A plant in state vector form which gives the 
transfer f'unotion of equation (2) IS, 

1 

-0 ,039 
1,oo 
3 '  

0 

This was obtained by deriving b* 

transfer functions f r o m  a set cf equations of this 
form but with unknown coefficients and then 
adjusting coefficients to give the proper poles, 
zeros and gains, 
be obtained directly f r o m  the transfer functions 
of equation (2) and the transformation to 
continuous coordinates of Reference 5, 

The transformation matrix L, which relates 
the output of the flexible vehlule to the y 
variables contains many elements which are very 
small. It is p o s s i b l e  to neglect these, The 

A similar set of equations could 
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trmsfonnation used in the analog 8lInulatiOn wabr 

Because of the close correspondence of the yls  
with the r i g l d  body variables, a new set of 
variables ~ F J ~ F J ~ F J ~ ~ J  is defined i n  equation ( 5 ) .  
Motion of eP corresponds very closely with that 
of eR, so it i s  reasonable t o  take equation (4) as 
the trmzatecl model of the f u l l  system. 

choosing of a truncated model f o r  controller design. 
F i rs t ,  division of the plant in to  primary and 
aeoondary Qna!!c!s cannot be made un t i l  the 
variable t o  be controlled has been specified. 
variable may be one of the physical variables 
appearing i n  the state vector x or  may be a 
l inear  combination ofthem. 
secondary dynamlcs are a resul t  of a limited number 
of physical variables i n  the equations of motion, 
(Table I),  the primary dynamics cannot be obtained 
by simply neglecting these variables and equations. 
For example, i f  the equations for  the flexure 
modes and actuator were,omitted i n  t m c a t i n g  to  
a fourth order model oorkesponding t o  Qlr the 

. Two points should be emphasized i n  the 

This 

Second, even i f  the 
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Closed-Loop !Mrne-Optimal Control L a w  

The next step In the synthesis procedure i s  
t o  derive a closed-loop controller f o r  the m o d e l  
of eguation (4) .  
time-optimal regulation of pitch att i tude; that 
i s  OF is t o  be brought to  zero from an init ial  
condition In minlnnam time mbject t o  a bounded 
control variable, and then held at zero. !This 
corresponds t o  motion t o  a one dimensional l i ne  
segment I n  the four ilimensional space of 

The criterion for design i s  

b 

ep# ep* \ 

There I s  no knownmethod f o r  obtaining a 
useful closed form expression f o r  the closed- 
loop control l a w  u(x) which m o v e s  the plant t o  the 
desired l i ne  segment optimally. However, It I s  
FoeBible t o  compute open-loop solutions u( t ,x( o).-) 
fo r  any i n i t i a l  condition x(0) using the computa- 
t ional  techniques described i n  Reference 6. These 
techniques solve a set of transcendental equations 
fo r  a control variable u(t,x(O) ) whlch I s  con- 
strained t o  satisfy the maximum principle. 
the maximum principle has been shown t o  be a 
necessary and sufficient condition for  the optimum 
solution, the u(t,x(O) ) obtained I s  the  optimal 
one. 
equations on l ine  t o  achieve effective-closed-loop 
uontrol. 

Since / 

It is  not pract ical  t o  solve the required 

Instead a colleotion of open-loop 
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optirmun t ra jector ies  frop a set of ini t ia l  
conditions distributed evenly throughout the 
phase space k g i o n  of Interest I s  used t o  define 
a closed-loop oontrol law by the methob described 0 

i n  Referenee 7. Each of the variables eP, OB, 
+, and % i s  divided up Into 32 regions called 
quanta. A Boolean variable X i ,  is  defined f o r  
each quantum (i = 1, 2, 3, 4, j - 1, 2, ... 32). 
The variable X i  takes a value one If the measured 
magnitude of the ith variable I s  within the j t h  
region and takes the value zero if the magnitude 
I s  within any other reglon. A logic form, 

is assumed capable of mechanizing the control l a w  
j and the 128 constants, hi, 

are experimentally adjusted t o  make u(x) agree 
with the optimum control -le discrete points 
on the optimum trajectory, T h i s  adjustment o r  
training procedure is shown i n  Figure 4. 
S is opened a t  t = 0 and the open-loop optimal 
solution u ( t )  applied to  the simulated plant, 
Output of the plant x ( t ) ,  i s  the Input t o  the 
logical net and the output of the net u(x (t) ), 
i s  compared with the optimum control variable 
u(t,x(O) ) a t  discrete intervals of time. If  the 
control variables are different,  the Xi corres- 
ponding t o  the Xi's which are one fo r  that x ( t )  
are incremented I n  the direction t o  make the sign 

Switch 

3 
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of their  swll the s8me a8 the sign of u(t,x(O) ). 
If u(x(t) ) and u(t,x(O) ) are the same then no 
adjustment is made, This procedure was carried 
out on a general purpose digital computer using a 
set of 198 optimum trajectories for the plant of 
equation (4) , dlstributed i n  the spaoe, 

0 s 'F - < 0.1 . 
-0.12 s < 0.12 

Control variable comparison points were a t  
intervals of 0.1 aeoond. As the adjustment is 
oamled out, the nuniber of differences (called 
e r rors j  between u(x(t j  j ami u(t,x@) 1 ie GZI 

indication of the convergence of the p-medure. 

N 
No. of errors i n  N points 

3 - The per cent errors,  100 

l e  g l o t b d  as a f m c t l o n  of the number of trajector- 
i e s  I n  Figure'S, Firs t  switch points are those 
between t = 0 and the first switch time, second 
switch points between the first switch time and the 

J second, etc. In i t ia l  Xi were a l l  taken t o  be zero. 
It is seen that errors drop very rapidly a t  first, 
being less  than 10 per cent after only 100 
t ra jector ies ,  A t  5000 and 7500 t ra jector ies  the - 
resolution of the logic of equation (6) is a r t i f i c -  
a l ly  increased by multiplying a l l  Xi!" by two, 
A t  11,000 t ra jector ies  the Ails are-multiplied 
by a factor of ten. Typical ClO8ed-loop control 

J 



responses using the loglo a t  the stages of 
training ahown i n  Figure 5 are presented i n  
Figure 6. A t  198 trajectories the controller has 
not yet stabil ized the s ta t ica l ly  unstable vehicle. 
A t  2100 t ra jector ies  the closed loop i s  
apparently stable but responses are poor. A t  
11,000 tra3ectories responses closely approximate 
optimum. 
evaluation of closed-loop responses a t  13,500 
trajector ies) ,  
constants gt 11,000 traJeotories i s  taken as 
the olosed-loop controller for the plant o f  Table 1. 

procedure shown In Flgure 5 should not be taken- 
as typical, I n  the oaae shown, the InZtial  con= 

peating the 1 9  traJeotor1es three times, the 
ra te  of reduotion i n  errors was limited primarily 
by build-up o f  the magnitudes of the X i f s .  
Co;lvel?gence t o  a good contmller oan be speeded 
up by several means Including starting with X * s  
corresponding t o  a planar approximation to  the 
surface, o r  by multiplying the X t s  by a constant 
a t  600 trajectories--instead of a t  5000. 
without these speed-up procedures however, the 
computer time t o  obtain the f ina l  controller used 
was not prohlbitive, Approximately f ive  hours 
of Honeywel1-800 computer Lime were used t o  obtain 
500 optimum solutions, compute t ra jec tor ies  for  
198 of these and store them on tape and then 

(Limited hgrdmre did  not permit 

The logic of equation (6) with 

The slow convergenoe of the t ra ining 

gtEmt#s XJ xere t&en eq??=L tc2 zem a& after re- i 

Even 



adJubt the loglo ab desorlbed I n  the text and 
shown In  Figure 5. 

Control of the Flexible Vehicle 

A block diagram of the control system is 
given i n  Blgure 7, MecharJL.l,zation of the logical 
net for this optimal control of the fourth order 
plant wa8 a~%mnpll8hed using standard, comnerolal 
analog t o  d i g i t a l  converters fo r  quantization and 
diode-transistor logic In conjunotlon with 
standard ladder networks t o  form the logic of 
equation (6) (Reference 7). A l inear  switching 
mode of the control variable was used when the 
plant output was within approximately one quantum’ 
of the target set. This reduced residual errors  
dce t o  sxLtcfiir?g OT? 8 qwmtized axLtcbAr?g mataQe 
and held the plant within the target s e t ,  The 
l inear  switching used In’ tNs mode was, 

No attempt was made t o  minlmlze the steady state 
l i m i t  cycle with the control variable i n , t h l s  mode, 

fed back t o  the controller were investigated. The 
first measured the state of the system using the 
method of Reference 8 which uses a complement of n 
sensors i n  measuring the s t a t e  of an nth order 
system. I n  the second, a r ig id  body pitch rate 
signal was derived using the phase blending 
technique of Reference 9. 

Two schemes for measurement of the variables 

This provided a signal 
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whioh could be freed of first mode influenoe, 
however In  thls case a sl ight amount of first 
mode feedback was included i n  the signs1 t o  damp 
the first mode bending, 

Typical analog responses are shown i n  
Figures 8 j  9, 10, and 11, 
a t t i tude  responses are quite similar for r i g i d  
body feedback and f o r  blender feedback of pitch 
rate, The small amount of first mode feedback 
(blender gain 5 - 0.9) causes the first mode t o  
damp out with the blender system whereas with 
r ig id  body feedback there  i s  a sustained oscil lation. 
When the blender gain % was set t o  cancel a l l  
f i rs t  mode feedback (K1 = 1,0)9 the blender system 
also exhibited a sustained oscill_ation of the first 
- mode. _ _  Responses t o  40-fps sharp-edged gusts 
are shown In  Figure 10, The single component 
a t t i tude  regulator essentially ignores the gust 
disturbance and maintains the desired att i tude.  
Figure 11 i l lu s t r a t e s  response t o  various command 
Inputs. 
approximate time optimal regulation, it exhibits 
a very good following capability. 

Rigid body pitch 

Although the system was designed t o  

Conclusion 

It has been shownthat the collection of 
experimental procedures and--theoretical howledge 
is sufficient t o  use a time-optimal regulation 
cr i ter ion for  rational design of controllers for  
a high order plant wi th  known coefficients, The 
synthesis procedure include0 obtaining a 
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representative set of open-loop opt- 
t ra jec tor ies  fo r  a tmcated'model W c h  I s  based 
on the &ominant dynamlcs of the plant. 
of open-loop t ra jector ies  i s  used t o  define a 
closed-loop control law fo r  the model. 
controller I s  applied t o  the f u l l  plan%, the 
output is effectively that of the optimally 
controlled model f i l t e red  by the secondary 
dynamics of the plant. The result ing controller 
i s  relat ively simple, However measurement re- 
quirements are severe in  that the en t i re  state of 
the system must be measured, This is feasible 
u$lng the  methods of Reference 8 but undesirable 
because og the large number of sensors required. 
Such schemes as the gyro blender give promise 
of relaxing these requirements. 

The set 

When this 

\ 
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U(S) 
Table 1. Critical  frequencies of G(s)  = 

Static gain of airframe = 0.0985 rad/rad 

Source ___---- - _____ 
Pseudo - Integrator 

Actuator 

Rigid Body 

Ta i l  Wags Dog 

F i r s t  Bending Mode 

Second Bending Mode 

Third Bending Mode 

Poles 
. _. . . . 

-0.02 

-30 
-6. 5 f j 65 fix 
1. 4296 
-1. 4964 

-0. 0962 f j 18. 00 

-0. 233 f j 46. 34 

-0.479 f j 92. 69 

Z e r o s  

-0.0478 

-0. 0233 f j 57.00 

-0. 120 f j 17. 77 

-0. 225 f j 46. 81 

-0. 454 f j 94. 35 
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Figure 1. Time Optimal Control of a Rigid Launch Vehicle 
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Figure  9. Attitude Regulation - Response t o  Initial Desplacement E r r o r s  
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Figure  11. Attitude Control - Response to  Command Inputs 
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